The Weierstrass function is continuous everywhere but differentiable nowhere. In 1872, Karl Weierstrass defined it as f(x) =  Σakcos(b kπx) where the sum is from k=0 to  ∞. The shape displays increasing detail with progressive magnification, like other fractal forms. 

(Source: geometric-aesthetic)

7 months ago • 303 notes • August 26th
Tagged with weierstrass function  mathematics  calculus  graph  fractal